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SUMMARY

Mould filling processes, in which a material flow front advances through a mould, are typical examples
of moving boundary problems. The moving boundary is accompanied by a moving contact line at the
mould walls causing, from a macroscopic modelling viewpoint, a stress singularity. In order to be able to
simulate such processes, the moving boundary and moving contact line problem must be overcome. A
numerical model for both two- and three-dimensional mould filling simulations has been developed. It
employs a pseudo-concentration method in order to avoid elaborate three-dimensional remeshing, and
has been implemented in a finite element program. The moving contact line problem has been overcome
by employing a Robin boundary condition at the mould walls, which can be turned into a Dirichlet
(no-slip) or a Neumann (free-slip) boundary condition depending on the local pseudo-concentration.
Simulation results for two-dimensional test cases demonstrate the model’s ability to deal with flow
phenomena such as fountain flow and flow in bifurcations. The method is by no means limited to
two-dimensional flows, as is shown by a pilot simulation for a simple three-dimensional mould. The
reverse problem of mould filling is the displacement of a viscous fluid in a tube by a less viscous fluid,
which has had considerable attention since the 1960’s. Simulation results for this problem are in good
agreement with results from the literature. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A major aim of the simulation of mould filling processes is to predict the trajectories of fluid
particles including the development of the flow front. This flow front is a moving free surface,
of which the position is to be determined as part of the solution procedure. The contact lines
of the free surface at the mould walls are also moving, giving rise to extra complications, such
as a stress singularity at the contact line in case of a no-slip boundary condition for the filling
fluid [1].

Several methods have been developed to solve problems of viscous flows with moving
boundaries [2–4]. Adaptive grid methods (involving remeshing) have been commonly used in
codes for two-dimensional simulation of moulding processes: the mesh covers the fluid area
and is extended upon every time step.
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Our interest is focused on three-dimensional mould filling simulations, for which we have
chosen to avoid remeshing, since it is very elaborate for three-dimensional meshes. Instead,
we have adopted a pseudo-concentration method [5], which is related to the volume of fluid
(VOF) method [6]. In this method, the flow problem is solved on a fixed grid that covers
the entire mould. A fictitious fluid is introduced to represent the air downstream of the
flow front. The main property of this fictitious fluid is that it should not contribute to the
pressure build-up in the mould during filling. Therefore, its viscosity is set to a value at
least 103 times smaller than the viscosity of the filling fluid. However, the viscosity of the
fictitious fluid exceeds the real value for air by several orders in order to keep the Reynolds
number small. Furthermore, the fictitious fluid is allowed to leave the mould at some
specified boundaries.

The distinction between filling fluid and fictitious fluid is made by labelling fluid particles
with a material label c (being the pseudo-concentration), which is given the value c=1 for
the filling fluid, and c=0 for the fictitious fluid. Near the flow front, c is a continuous
function between 1 and 0; the flow front itself is determined by the iso-value line for
c=0.5. This interface is tracked by convecting the material labels with the fluid velocity.

In viscous flows, the region immediately upstream of the flow front is characterised by
the fountain flow phenomenon [7]: fluid particles that approach the front from the (up-
stream) core of the flow, are diverted towards the wall. In the past, approximate solutions
were developed for fountain flow (under the assumption of a flat flow front) in an axisym-
metric cylinder [8] and between two parallel plates [9]. However, no such expressions for
fountain flow in three-dimensional moulds are available.

The pseudo-concentration method has also been used in the context of mould filling by
others, [3–5,10–12] who use different boundary conditions at the mould walls. Thompson
[5] imposes a no-slip condition at the mould wall parts that are wetted by the filling fluid,
but he is not clear about the boundary condition in the fictitious fluid. His mould filling
example shows a moving contact line that is considerably lagging behind with respect to the
flow front. His pseudo-concentration function is a continuously decreasing function that has
to be smoothed regularly because it is severely distorted by the convection algorithm.
Moreover, he reports a mass loss of 10%. Lewis and co-workers [3,10] adopt the method
for the two-dimensional simulation of metal casting. However, they approach the turbulent
metal flow as a laminar flow with a free-slip boundary condition at the entire mould wall.
Hence the fountain flow effect, which is irrelevant to their case, does not occur. Fortin et
al. [11] also use the pseudo-concentration method for two-dimensional (polymer) injection
moulding. Prescribing no-slip for the filling fluid, and free stress in both normal and
tangential direction for the fictitious fluid, they are able to capture the fountain flow effect.
Their attempts to impose a zero normal velocity for the fictitious fluid along the mould
walls (except at specified air vents) failed, as this resulted in a thin layer of fictitious fluid
remaining at the wall after the flow front had passed (A. Fortin, personal communication).
Hétu et al. [12] use the same boundary conditions as Fortin et al. Their flow front results
seem rather inaccurate—with material appearing at locations in the mould that have not
been reached by the flow front yet—and they do not show any fountain flow results.
Finally, Medale and Jaeger [4] solve the pseudo-concentration convection equation only in
a limited domain surrounding the interface. They then correct for mass losses by slightly
changing the value of the material label cinterface that determines the interface position. At
the mould walls, the following slip condition is imposed:

twall= − fut, (1)
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3D POLYMER MOULD FILLING PROCESS 1357

in which twall is the wall shear stress, ut is the velocity tangential to the wall, and f is a friction
coefficient which is set to 0.01.

In this paper we want to demonstrate that the pseudo-concentration method is suitable to
simulate the filling of a mould with a Newtonian fluid when the proper boundary conditions
are applied. First, the results for a two-dimensional (axisymmetric) mould will be shown to
prove that the method captures the important aspects of the flow, such as the flow front shape
and the fountain flow effect. Therefore, our model for mould filling simulations is presented
in Section 2. Special attention is given to the boundary conditions, which strongly influence the
movement of the contact points (or lines). In this paper, we will not take into account surface
tension and non-isothermal effects. The implementation of the model in a finite element code
is treated in Section 3. In Section 4 a number of simulation results will be discussed, leading
to the conclusions given in Section 5.

As an example of moulding processes, the injection moulding of polymer products will be
considered. Consequently, the filling fluid will be referred to as ‘polymer’. However, the
method employed here is—in principle—also applicable to other moulding processes.

2. MODELLING

In this section the model for three-dimensional mould filling simulations will be derived from
the equations governing the process. It will be shown that the boundary and interface
conditions require special attention.

2.1. Go6erning equations

For the sake of simplicity, the flow is considered incompressible and isothermal, hence the
conservation equations for mass and momentum reduce to the Navier–Stokes equations:

9 ·u=0, (2)

r
(u
(t

+ru ·9u=9 ·s+rg. (3)

The constitutive equation for the Cauchy stress tensor s is given by

s= −pI+t, (4)

p=p0−mtr(D)=p0, (5)

t=2hDd, (6)

in which generalised Newtonian behaviour is assumed for the viscosity:

h=h(p, Dd). (7)

Each variable in Equations (2)–(7) can be written as a product of a dimensionless variable
and its characteristic value (see Table I). The ratio o determines the type of mould geometry;
in this paper we limit ourselves to cube-like (o:1) and oblong (oB1) geometries. (The reader
may note that since y is rather unconventionally scaled with H instead of L, thin-walled
geometries are characterised by o\1.) At this point, we will not specify the characteristic value
pref for the pressure yet.

The conservation equations can now be expressed in their dimensionless forms. When
normalising all terms in the equation of conservation of momentum with respect to the
stationary inertia forces, this yields
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Table I. Process variables expressed as products of dimensionless variables
(marked with *) and characteristic values

z=z*H=z*oLy=y*H=y*oLx=x*L
6=6*V=6*oU w=w*V=w*oUu=u*U

o=H/L
Dd=Dd*U/Ht= t*t p=p*pref

h=h*h0 g=g*g0r=r*r0

The rate-of-deformation tensor Dd has been scaled with the largest components of 9u for
o51, which are (u/(y and (u/(z.

9 ·u=0, (8)

Srr
(u
(t

+ru ·9u= −
pref

r0U2 ·9p+
1

Re
9(2hDd)+

1
Fr

rg, (9)

from which the asterisk (*) indicating dimensionless variables has been removed. The dimen-
sionless Reynolds, Strouhal, and Froude numbers are given by

Re=
r0UH

h0

, Sr=
L

tU
, Fr=

U2

g0L
. (10)

The boundary conditions for the Navier–Stokes equations will be discussed separately in
Section 2.2.

Characteristic values for injection moulding of polymers are given in Table II. The
characteristic time t is related to the time scale upon which velocity fluctuations of order U
occur. In injection moulding, such a fluctuation will only occur immediately after starting the
process. As we are not interested in start-up phenomena, t is very large with respect to L/H
and consequently the Strouhal number Sr is very small. The other dimensionless numbers can
be determined as

Re=
!10−3

102

for polymer
for air

, Fr=10−2, (11)

2.1.1. Polymer domain. For the polymer domain, the Reynolds number indicates that the
stationary inertia terms can be neglected. The conservation of momentum equation is now
re-scaled with respect to the viscous stress term:

Table II. Characteristic values of the process variables for polymer injection
moulding

Variable Unit Characteristic value

Polymer Air

r0 kg m−3 103 1
10−5103Pa sh0

L 10−1m
H m 10−2

U m s−1 10−1

10m s−2g0

10−2N m−1g

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1355–1369 (1998)
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prefH
h0U

9p=9(2hDd)+
Re
Fr

rg. (12)

The pressure in the polymer is determined by the viscous stresses, therefore, we can define
pref=h0U/H, yielding a stationary Stokes equation:

9p=9(2hDd)+
Re
Fr

rg. (13)

Whether or not the gravity forces have to be taken into account, is determined by

Re
Fr

=
rg0HL

h0U
=

103101H10−1

10310−1 =10H. (14)

Hence if O(H)=O(L)=10−1 m, then the gravity forces have to be taken into account;
otherwise, if H is considerably smaller than 10−1 m, then the gravity forces can be neglected.
Conforming to injection moulding practice, we choose H to be of order 10−2 m, thus further
limiting ourselves to oblong geometries, but the inclusion of gravity forces does not impose
significant difficulties.

2.1.2. Air domain. For the air domain, the viscous forces can be neglected and the scaling of
Equation (9) can be maintained. In this case, the characteristic pressure can be defined as
pref=r0U2, yielding

ru ·9u= −9p+
1
Fr

rg. (15)

This implies that we would have to solve a non-linear (Euler) equation, which, however, would
yield a pressure drop in the air domain that is considerably smaller than in the polymer
domain (which can be seen from a comparison of the pressure scaling for both materials). By
replacing the air with a fictitious fluid, of which the viscosity is of order 10−3 of the polymer
viscosity and which has the same mass density as air, the Reynolds number for the fictitious
fluid domain would reduce to Re=10−3. Hence the inertia terms in the fictitious fluid domain
can be neglected, while the pressure drop is still negligibly small compared with the pressure
drop in the polymer domain. As a result, we can apply the stationary Stokes equation
(Equation 13) for the entire computational domain.

Consequently, in the sequel of this paper the words ‘polymer’ and ‘air’ will denote
Newtonian fluids with viscosities of order 103 and 1 Pa s, and densities of order 103 and 1 kg
m−3 respectively.

2.2. Boundary conditions

We define a domain V covering the mould, with boundaries Ge, Gw and Gv designating the
mould entrance, the mould walls, and the air vents. At the mould entrance, either the injection
flow rate or the normal stress (i.e. the injection pressure) is prescribed. Wherever the mould
wall is covered with polymer, a no-slip condition is imposed. The physically correct boundary
conditions near the moving contact line, however, cannot be uniquely determined, since the
physics of this phenomenon are still not completely understood, [13,14] and will probably
demand modelling at scales much smaller than any mesh size that is manageable for mould
filling simulations [15]. As a no-slip boundary condition in the air would prevent the polymer
from contacting the mould wall, we have chosen to prescribe a free-slip condition downstream
of the flow front, thus enabling the contact point to move freely. Hence, the boundary
condition along the mould walls is a function of the type of material. This has been

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1355–1369 (1998)
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implemented by using an adjustable Robin boundary condition for the (dimensionless) velocity
and stress components ut and st in tangential direction:

aut+st=0 Öx�Gw@Gv, (16)

in which the dimensionless ‘Robin penalty parameter’ a is defined as

a=a(c)=
!large (]104)

0
if c]0.5 no−slip
if cB0.5 free−slip

. (17)

(From Equation (16) it can be derived that a scales with h0/H.)
The mould walls are impermeable, except at the air vents Gv where the air is allowed to leave

the mould, yielding the following boundary conditions for the velocity and stress component
un and sn in normal direction:

un=0 Öx�Gw, (18a)

aun+sn=0 Öx�Gv, (18b)

in which a is again given by Equation (17).

2.3. Interfacial conditions

From a physical point of view, two more boundary conditions hold for the flow front,
namely immiscibility and conservation of momentum. The immiscibility condition is already
implied by the ‘conservation of identity’ (Equation 23). The conservation of momentum at the
interface is expressed as [16]

(s2−s1) ·n12=g12kn12, (19)

in which the subscripts 1 and 2 denote the polymer and the fictitious fluid, and g12, k, and n12

denote the interfacial tension, the interface curvature, and the normal vector to the interface
respectively. Using Equation (6) and introducing dimensionless variables, Equation (19) can be
written as

(s2*−s1*) ·n12* =
1

Ca
g12* kn12* , (20)

in which Ca is the Capillary number, i.e. the ratio of viscous and interfacial forces, defined as

Ca=
h0U

g
, (21)

in which h0 is the characteristic viscosity of the highly viscous fluid, U is the characteristic
velocity, and g is the interfacial tension. For injection moulding of polymers, the Capillary
number is of the order 104, indicating that interfacial forces can be neglected. Thus Equation
(19) reduces to (when omitting the asterisk from the dimensionless variables)

(s2−s1) ·n=0, (22)

which is already taken care of by the overall conservation of momentum equation (9), since the
material properties are continuous functions of c at the interface. As a result, the phenomena
at the flow front have already been taken into account in our model.

Although we are able to employ generalised Newtonian viscosity behaviour in our simula-
tions, we will limit ourselves to Newtonian behaviour in this paper, since the fountain flow
effect is determined by the continuity equation, more than by the constitutive behaviour [17].

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1355–1369 (1998)
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2.4. Material label con6ection

The material labels that are used to distinguish polymer from air are convected through the
mould with velocity u. Hence a pure (passive scalar) convection equation describes the
evolution of the material label distribution; in its dimensionless form, it reads

c; =0USr
(c
(t

+u ·9c=0. (23)

In fact, this can be regarded as a conservation equation of particle identity. Initially, c is set
to zero in the entire domain V, and only a boundary condition at the flow entrance is needed:

c=1 Öx�Ge, t\0, (24)

The boundary condition for the convection equation can also be the time of entrance
(injection time) or one of the entrance co-ordinates. Equation (23) can then be used to perform
particle tracking [18]. Some examples will be shown in Section 4.

The material properties as they appear in the Stokes equation can now be determined locally
as a function of the material label. The mould filling problem can thus be simulated by solving
Equations (13) and (23) and updating the material properties at every time step.

3. NUMERICAL METHODS

The model has been implemented in the finite element package SEPRAN [19]. This section
gives a short description of the implementation.

3.1. The Stokes equation

A standard Galerkin finite element method is used to solve the continuity equation (8) and
the Stokes equation (13), which can be written after spatial discretisation as

L u
�

=0, (25)

S u
�

+LT p
�

= f
�

, (26)

in which f
�

is the right-hand-side vector containing the essential boundary conditions and any
volume forces, and

Sij=
1

Re
&

V
h9fi ·9fj dV, Lij= −

&
V

ci9fj dV,

and fi and ci are the shape functions for the velocity and the pressure, respectively.
For 2D problems, a penalty function method in combination with a direct solver is used to

solve this system of equations. In the case of 3D problems, the combination of an integrated
method and an iterative (conjugate gradient squared (CGS)) method is applied in order to
avoid excessive CPU time and memory usage [20].

The elements used are so-called Cronzeix–Raviart (Q2
+ −Q1) rectangular elements, that

employ an extended quadratic approximation for the velocity and a linear approximation,
which is discontinuous at the element boundaries, for the pressure [21].

The material parameters are initially defined as discontinuous functions of the material
labels, e.g. for viscosity

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1355–1369 (1998)
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Figure 1. Piece-wise linear interpolation of viscosity on a quadratic element to avoid negative values: - - -=original
function, — = interpolated function.

h=h(c)=
!hpolymer

n fictitious

if c]0.5
if cB0.5

. (27)

The use of quadratic shape functions may then lead to negative values of the material property
at the elements’ integration points (see Figure 1). This is avoided by piece-wise linear
interpolation of the material parameter at the midpoints of elements containing the flow front
[11].

3.2. The con6ection equation

The convection equation for the material labels is solved with the finite element method
using an streamline–upwind Petrov–Galerkin (SUPG) scheme incorporating Shakib’s parame-
ter suggested for time-dependent problems [22,23].

Applying spatial discretisation, the convection equation can be written in the form

M c;
�

+N(u) c
�

=0, (28)

in which M is the mass matrix and N(u) is the convection matrix. Temporal discretisation with
a finite difference u-method yields

M
c
�

n+1− c
�

n

Dt
+uN(un+1) c

�
n+1+ (1−u)N(un) c

�
n=0, (29)

in which the superscripts n+1 and n indicate consecutive time steps. This can be approximated
by a two-step procedure, yielding a set of equations that can be solved more efficiently:� M

uDt
+N(un+u)

�
c
�

n+u=
M

uDt
c
�

n, (30)

c
�

n+1=
1
u

( c
�

n+u− (1−u) c
�

n). (31)

For the time discretisation, a modified version of the Crank–Nicolson scheme (u=0.5) is
used: u is set to 0.5+aDt, in which Dt is the dimensionless time step defined as Dt=
Dt/(tend− t0) and a is a small positive real number (e.g. a=0.03). This suppresses oscillations
in c without affecting the order of accuracy.
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After every time step, the material labels are rounded off to either unity or zero everywhere,
except in the elements containing an interface, where the original values of the material labels
are retained. Hence, possible oscillations in the material label field are suppressed.

4. RESULTS

In order to show that the method described in this paper is suitable for the simulation of
moulding processes, four simulation results are presented:

1. Filling of an axisymmetric cylinder with polymer; this is, strictly speaking, a two-dimen-
sional problem.

2. Flow front development in a (two-dimensional) bifurcation.
3. Three-dimensional flow in a rectangular cavity.
4. Expelling a viscous fluid from a tube by a less viscous fluid, as described by Taylor [24].

In all simulations, a parabolic velocity profile at the entrance is prescribed.

4.1. Filling of an axisymmetric cylinder

As an initial test for the model, the injection of polymer into an axisymmetric cylinder was
simulated, with the geometry and the parameters given in Figure 2(a) and Table III. A
parabolic velocity profile is prescribed at the flow entrance Ge, causing the cylinder to be filled
in 1.0 s. An air vent has been defined at Gv. A mesh of 40×10 quadrilateral, axisymmetric
elements (along the cylinder length and radius, respectively) was used.

To visualise the fountain flow effect, time labels were introduced: particles entering the
mould are given their injection times as labels (see Section 2.4). These are convected through
the mould analogously to the material labels. The air that is initially present in the mould is
given a negative time label.

The time label distribution after 70% filling (Figure 2(c)) clearly shows the fountain flow
effect: polymer material has approached the flow front from the centre and has been diverted
towards the wall. This results in the typical ‘V’-shaped material label field near the mould wall
that have also been encountered in experiments [17,25]. It can also be seen from the pressure
contours in Figure 2(d), that the air does not contribute significantly to the pressure drop. The
polymer mass loss in this simulation was B2%.

Table III. Process parameters for the simulations

3D boxBifurcationMould type Axisymmetric cylinder

see Figure 3 L=100 mmDimensions L=100 mm
R=5.0 mm W/2=15 mm

H/2=5 mm
103 103 103Viscosity ratio

1.0 s1.0 s1.0 sFilling time
400 1710 980c Elements
100 200 100c Time steps

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1355–1369 (1998)
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Figure 2. Simulation of filling of an axisymmetric tube (results shown for 70% filling). (a) Computational domain. (b)
Detail of the flow front area: material labels (grey=polymer, white=air), and streamlines relative to the flow front
velocity. The dashed line corresponds to a semi-spherical flow front. (c) Time label distribution visualising the fountain
flow effect (black and light grey=polymer, dark grey=air). (d) Pressure contour lines at equal pressure intervals.
(Note that scaling of the width-to-length ratio has distorted the semi-spherical shape of the flow front in Figure 3(c).)

A detail of the flow front and the streamlines relati6e to the mo6ing flow front are depicted
in Figure 2(b). The phrase ‘fountain flow’ becomes immediately clear from these streamlines.
For Newtonian fluids in an axisymmetric tube, the flow front was found to be semi-spherical
[26]. Comparison with the (quarter) circle drawn in Figure 2(b) shows that the computed
interface is indeed not far from semi-spherical.

From the results for filling of an axisymmetric tube, we conclude that the method presented
in this paper is capable of tracking the material interface in mould filling processes governed
by viscous effects. Moreover, the model is also able to deal with the fountain flow effect.

4.2. Flow in a bifurcation

Flow bifurcations are common in mould filling processes, especially in polymer injection
moulding. Therefore, we have tested whether the method presented in this paper is able to deal
with the bifurcation that is present in the T-shaped two-dimensional mould shown in Figure
3(a), which is taken from Zoetelief et al. [18]. Of the two downstream branches, the top branch
has a lower flow resistance than the right branch, since it is both wider and shorter. An extra
air vent at the bifurcation is necessary to prevent air entrapment. The process and material
parameters are similar to the previous case (see Table III).

Figure 3(b–d) show the time label fields at three different filling stages. In Figure 3(b) the
flow front has just started to split between the two downstream branches. Due to the lower
flow resistance, the flow front in the top branch runs ahead (Figure 3(c)). After the top branch
has been filled, all material will flow into the right (narrow) branch (Figure 3(d)). It can even
be seen that material in the entrance of the top branch is eventually dragged into the right
branch. Due to a mass loss of 2.8%, the mould is not entirely filled at t=1.0 s.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1355–1369 (1998)
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4.3. Flow in a three-dimensional rectangular ca6ity

Since the modelling described in Sections 2 and 3 did not contain any restriction to
two-dimensional flows only, the method should be directly applicable to three-dimensional
mould filling simulations. Figure 4(a) shows a three-dimensional rectangular cavity, of which
only one-quarter is meshed because of two-fold symmetry (Figure 4(b)). Due to the increase in
computing time and memory usage, this mesh is somewhat coarser than in the two-dimen-
sional situations presented above. To (partly) compensate for this coarseness, the mesh is
refined towards mould walls, where both the velocity gradients and the injection time label
gradients are large. With process and material parameters being similar to the previous cases
(see Table III), the simulation for a 20×7×7 mesh took nearly 6 h of CPU-time on a SGI
Power Challenge R10000.

Figure 4(c,d) show the three-dimensional fountain flow effect in both planes of symmetry.
The relatively coarse mesh in the x- and z-directions together with the large time label
gradients near the mould walls gives rise to oscillations in the injection time label field, as can
be seen in cross-section plots made at y=0.3L and y=0.7L (Figure 4(e,f)). Such oscillations
do not occur in the material label distribution, because all material label gradients are
continuously updated by setting them to either zero or one outside the interface regions. The
mass loss of polymer is 3.5%, which is nearly twice as much as in the axisymmetric cylinder
case.

These three-dimensional simulation results show that the pseudo-concentration method, as
it is employed in this paper, is indeed suitable for three-dimensional flow simulations.

Figure 3. Simulation of flow in a two-dimensional bifurcation. (a) Geometry. (b) Detail of injection time label
distribution at 0.45 s. (c) Injection time label distribution at 0.8 s. (d) Injection time label distribution at 1.0 s. (Black

and light grey=polymer, dark grey=air.)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1355–1369 (1998)
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Figure 4. Filling simulation for a three-dimensional rectangular cavity (results shown for 90% filling). (a) Geometry.
(b) Computational mesh (corresponding to grey quarter of the geometry shown above). (c,d) Injection time labels at
planes of symmetry (c) x=0 and (d) y=0. (e,f) Injection time labels at the cross-sectional planes (e) y=0.3L and (f)

y=0.7L.

4.4. Expelling a 6iscous fluid from a tube

The question of displacement of a viscous fluid in a tube by a less viscous fluid was aroused
by Fairbrother and Stubbs [27] in 1935 and has received considerable attention since
[24,28–32]. In fact, it is the reverse problem of mould filling: the ‘mould’ is initially filled with
a viscous fluid, and a less viscous fluid is injected. Fairbrother and Stubbs found that the
injected fluid did not expel the original fluid entirely, as a considerable fraction was left behind
at the tube wall. This fraction, given by

m=
Aoriginal fluid

Atube

, (32)

in which A is the cross-sectional area perpendicular to the centre line of the tube, was found
to be a function of the Capillary number only (i.e. for Newtonian fluids). Taylor [24] suggested
that m reaches and an asymptotic value of at least 0.56 for large Capillary numbers (i.e.
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negligible surface tension). Cox [28] experimentally found m to be 0.60 for tetrachloromethane
penetrating into golden syrup (a sucrose solution) for Ca\10. Halpern and Gavern [31] used
a boundary element method for their numerical analysis of the problem; for an inviscid gas at
constant pressure penetrating into an incompressible Newtonian fluid, they neglected inertia
forces and found m=0.58 for Ca=104, which is similar to the experimental result of Poslinski
et al. [32].

We have simulated the displacement of a viscous fluid by a gas by injecting air into a tube
filled with polymer. As such, this simulation is similar to the filling of a tube described in
Section 4.1, but with ‘polymer’ and ‘air’ reversed. Furthermore, the polymer was allowed to
leave the mould at the mould exit assigned by Gv (Figure 2(a)).

This case also serves as a convergence test for the pseudo-concentration method presented
in this paper. The convergence of the residual fluid fraction m has been taken as the
convergence criterion, as it is directly related to the computed position of the air–polymer
interface. Assuming that a mesh of 128×32 elements (over L and R, respectively) and a time
step of 3.125×10−4 s yields a converged solution (which can be easily checked afterwards), we
have carried out two sequences of simulations: one with an increasing time step, and another
one with a decreasing number of elements (keeping, the mesh and the time step constant
respectively). Having thus found that a mesh of 32×8 elements yields a sufficiently converged
result (see Table IV), the time step has again been increased. A time step size of 1.25×10−2

for this mesh appears to be sufficient. Even a mesh of 16×8 elements seems to yield a
sufficiently converged solution, but gives rise to significant oscillations in the velocity field.

Figure 5(a) shows that an air core has penetrated into the polymer, leaving a polymer
fraction of m=0.59 behind, which is in agreement with the values found in the literature. The
streamlines in Figure 5(b) match well with the streamlines predicted by Taylor [24] and
visualised by Cox [29].

5. CONCLUSIONS

In this paper, we have adopted the pseudo-concentration method to develop a simulation
program for three-dimensional mould filling. To simulate the advancement of the flow front,
the boundary condition at the mould wall had to be split into two parts: a no-slip boundary

Table IV. Residual fluid fraction m as a function of element size and time step
for the case of a viscous (Newtonian) fluid being expelled from a cylinder by

a less viscous fluid

c Elements Time step [s]

6.25×10−4 1.25×10−3 2.5×10−3 5×10−33.125×10−4

0.601128×32 0.597 0.583 0.550
0.59964×32
0.60164×16

32×16 0.598
32×8 0.596 0.593 0.593 0.581 0.555

0.597* 0.596*16×8 0.597*
0.612*16×4

Results marked with an asterix exhibit oscillations in the velocity field.
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Figure 5. Simulation of driving a viscous fluid out of an axisymmetric tube (the fluid is allowed to leave the mould
at the right end). (a) Material label distribution after t=0.3 s (grey=polymer, white=air). (b) Detail of the flow front

area, with streamlines relative to the flow front velocity.

condition was imposed for the filling fluid region, whereas a free-slip boundary condition was
prescribed for the fictitious fluid region. This was implemented as a material (i.e. pseudo-con-
centration) dependent Robin boundary condition. For both fluids, the mould wall was
impermeable, except at specified air vents, where the fictitious fluid was allowed to escape.

The model presented in this paper has proven to work well for the filling of both two- and
three-dimensional moulds: both the advancement of the flow front, including the moving
contact points/lines, and the fountain flow effect, which is characteristic for viscous flow,
emerge very clearly from the simulations. Moreover, the model is also able to simulate the
penetration of gas into a viscous fluid, which can be considered the reverse problem of mould
filling, yielding a residual fluid fraction of 0.59.

From these results, we consider the pseudo-concentration method as a promising technique
for mould filling simulations, provided the boundary conditions near the moving flow front are
chosen properly. Three-dimensional simulations do need a considerable amount of CPU time
(6 h for a simple geometry), but in our opinion, this is still to be preferred over three-dimen-
sional remeshing.
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